Технические характеристики

По вопросам продаж и поддержки обращайтесь:

Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовешенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48

Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73

Киргизия +996(312)-96-26-47

Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Саранск (8342)22-96-24 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35

Казахстан +7(7172)727-132

Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35 Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Россия +7(495)268-04-70

cbc@nt-rt.ru || https://condalab.nt-rt.ru/

Acetone Ethanol Decolorant

Colouring, fixating and decolouring solutions for bacterial classification according to gram stain.

Practical information

AplicationsCategoriesDifferentiationGram-positive bacteriaDifferentiationGram-negative bacteria

Industry: Dyes and stains

Principles and uses

The Gram strain procedure differentiates microorganisms into two groups, those which retain the primary dye (Gram-positive) and those which lose the primary dye, due to the structure of cellular wall, and take the colour of the counterstain (Gram-negatives).

The procedure needs four reagents: Primary dye (Oxalate Crystal Violet Solution), Iodine solution (Lugol), Decolorizer (Acetone Ethanol Decolorant) and Counter stain (Safranin Solution).

Formula in g/L

Acetone

300 Ethanol

Instructions for use

Prepare a smear and heat-fix it by gentle heating in the flame.

1- Cover the smear with Crystal Violet. Let stand for 1 min.

2- Remove excess by rinsing with tap water.

3- Cover with Lugol and allow standing for 1 min.

4- Decant and rinse with tap water.

5- Decolorize with Acetone Ethanol Decolorant until waste decolorizer were colourless.

6- Rinse with tap water.

7- Counter stain with Safranin Solution for 1 min.

8- Rinse with tap water and air dry.

Examine under an oil immersion objective.

The procedure can be modified according to the user's preferences to achieve a weaker or stronger colour intensity, being carried out by changing the times for staining, washing etc.

Old cultures or smears could give atypical results. That is why cultures of 18-24 hours or recent smears are recommended.

It is very important to control the heat-fixation (few seconds), any excess heating could produce erroneous results. Highly chlorinated tap water could weak the counter staining.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25⁰C)
w/o rests	Liquid	N/A	N/A	3,5 - 7,3

Microbiological test

Microrganisms	Specification
Gram-positive bacteria	Blue-purple colonies

Cat. 5059

700

Gram-negative bacteria

Storage

Acetone Ethanol Decolorant

Colouring, fixating and decolouring solutions for bacterial classification according to gram stain.

Practical information

AplicationsCategoriesDifferentiationGram-positive bacteriaDifferentiationGram-negative bacteria

Industry: Dyes and stains

Principles and uses

The Gram strain procedure differentiates microorganisms into two groups, those which retain the primary dye (Gram-positive) and those which lose the primary dye, due to the structure of cellular wall, and take the colour of the counterstain (Gram-negatives).

The procedure needs four reagents: Primary dye (Oxalate Crystal Violet Solution), Iodine solution (Lugol), Decolorizer (Acetone Ethanol Decolorant) and Counter stain (Safranin Solution).

Formula in g/L

Acetone

300 Ethanol

Instructions for use

Prepare a smear and heat-fix it by gentle heating in the flame.

1- Cover the smear with Crystal Violet. Let stand for 1 min.

2- Remove excess by rinsing with tap water.

3- Cover with Lugol and allow standing for 1 min.

4- Decant and rinse with tap water.

5- Decolorize with Acetone Ethanol Decolorant until waste decolorizer were colourless.

6- Rinse with tap water.

7- Counter stain with Safranin Solution for 1 min.

8- Rinse with tap water and air dry.

Examine under an oil immersion objective.

The procedure can be modified according to the user's preferences to achieve a weaker or stronger colour intensity, being carried out by changing the times for staining, washing etc.

Old cultures or smears could give atypical results. That is why cultures of 18-24 hours or recent smears are recommended.

It is very important to control the heat-fixation (few seconds), any excess heating could produce erroneous results. Highly chlorinated tap water could weak the counter staining.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25⁰C)
w/o rests	Liquid	N/A	N/A	3,5 - 7,3

Microbiological test

Microrganisms	Specification
Gram-positive bacteria	Blue-purple colonies

700

Auramine

For use in Morse's fluorescence method for acid-alcohol resistant microorganisms staining. For "in vitro" diagnostic.

Practical information

Aplications Differentiation Categories Acid-fast organisms (AFB)

Industry: Dyes and stains

Principles and uses

The technique for the detection of acid-alcohol resistant microorganisms by fluorescence is similar to the classic Ziehl staining, but in this case carbol fucshin is replaced with a fluorescent dye with added phenol. Fluorescence coloring presents the advantage of greater visibility of a fluorescent microorganism against a dark background. This allows use of lower-magnification lens, which increase the field of view and decrease the time needed to evaluate the preparation.

Formula in g/L 5 Isopropanol

Phenol	5	Isopropanol	100
Water	892,2	Auramine	2,8

Instructions for use

1- Place slides on a staining rack and flood with Auramine for 15 min.

2-Wash gently in running water.

3-Decolorize with a decolorizer for 30 - 60 s.

4-Wash slides gently in running water.

5-Counterstain for 2 min (Potassium permanganate or Thiazine red).

6-Wash gently in running water.

7-Air dry.

8-Examine under a microscope fitted with filter sets.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25°C)
w/r rests	Liquid	N/A	N/A	N/A

Microbiological test

Any interference is not known. Acid, basic or high levels of Chloride or salts in wash water could alter the results.

Microrganisms	Specification
Background with permanganate	Black
Background with thiazine red	Dark red
Acid-fast organisms (AFB)	Bright greenish-yellow fluorescing
Non-acid-fast organisms	Non-fluorescent or slightly fluorescent

Storage

Temp. Min.:2 °C Temp. Max.:8 °C

Auramine

For use in Morse's fluorescence method for acid-alcohol resistant microorganisms staining. For "in vitro" diagnostic.

Practical information

Aplications Differentiation Categories Acid-fast organisms (AFB)

Industry: Dyes and stains

Principles and uses

The technique for the detection of acid-alcohol resistant microorganisms by fluorescence is similar to the classic Ziehl staining, but in this case carbol fucshin is replaced with a fluorescent dye with added phenol. Fluorescence coloring presents the advantage of greater visibility of a fluorescent microorganism against a dark background. This allows use of lower-magnification lens, which increase the field of view and decrease the time needed to evaluate the preparation.

Formula in g/L Phenol 5 Isopropanol

Phenol	5	Isopropanol	100
Water	892,2	Auramine	2,8

Instructions for use

1- Place slides on a staining rack and flood with Auramine for 15 min.

2- Wash gently in running water.

3- Decolorize with a decolorizer for 30 - 60 s.

4- Wash slides gently in running water.

5- Counterstain for 2 min (Potassium permanganate or Thiazine red).

6- Wash gently in running water.

7- Air dry.

8-E xamine under a microscope fitted with filter sets.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25°C)
w/r rests	Liquid	N/A	N/A	N/A

Microbiological test

Any interference is not known. Acid, basic or high levels of chloride or salts in wash water could alter the results.

Microrganisms	Specification
Background with permanganate	Black
Background with thiazine red	Dark red
Acid-fast organisms (AFB)	Bright greenish-yellow fluorescing
Non-acid-fast organisms	Non-fluorescent or slightly fluorescent

Storage

Temp. Min.:2 °C Temp. Max.:8 °C

Carbol Fucsin

For staining microorganisms by Ziehl-Neelsen acid-fast procedure.For "in vitro" diagnostic.

Practical information

Aplications Stain reagents Categories Acid-fast organisms (AFB)

Industry: Dyes and stains

Principles and uses

The acid-fast stain is a differential stain.

Bacteria are classified as acid-fast if they retain the primary stain (carbol fuchsin) after washing with strong acid and appear red, or as non-acid-fast if they lose their colour on washing with acid and counter stained by the methylene blue. Acid-fast property is due to the presence of high contents of a lipid called mycolic acid in the cell wall, that makes penetration by stains extremely difficult. Once the stain has penetrated it cannot be readily removed.

Carbol fuchsin, a red phenolic stain that is soluble in the lipoidal materials that constitute the major portion of the mycobacterial cell wall, does penetrate these bacteria and is retained. Heating drives carbol fuchsin through the lipoidal wall and into cytoplasm.

Formula in g/L

Basic fuchsine	2,5	Phenol	47,5
Water	850	Isopropanol	100

Instructions for use

1. Place slides on a staining rack and place a piece of filter paper, larger than the size of the smear, on each slide.

2. Flood with carbol fuchsin. Heat gently to steaming and allow to steam for 5 min. Do not overheat.

3. Remove the filter paper.

4. Wash gently in running water.

5. Decolorize with a decolorizer with two changes of reagent for 1-2 min until no more red color appears in washing.

6. Wash slides gently in running water.

7. Counterstain with methylene blue for 30 s.

8. Wash gently in running water.

9. Dry over gentle heat.

10. Examine under a microscope.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25°C)
w/o rests	Liquid	N/A	N/A	N/A

Microbiological test

Note: Any interference is not known. Acid, basic or high levels of Chloride or salts in wash water could alter the results.

Microrganisms	Characteristic reaction
Acid-fast organisms (AFB)	Orange-red colonies
Non-acid-fast organisms	Blue colonies

Storage

Carbol Fucsin

For staining microorganisms by Ziehl-Neelsen acid-fast procedure.For "in vitro" diagnostic.

Practical information

Aplications Stain reagents Categories Acid-fast organisms (AFB)

Industry: Dyes and stains

Principles and uses

The acid-fast stain is a differential stain.

Bacteria are classified as acid-fast if they retain the primary stain (carbol fuchsin) after washing with strong acid and appear red, or as non-acid-fast if they lose their colour on washing with acid and counter stained by the methylene blue. Acid-fast property is due to the presence of high contents of a lipid called mycolic acid in the cell wall, that makes penetration by stains extremely difficult. Once the stain has penetrated it cannot be readily removed.

Carbol fuchsin, a red phenolic stain that is soluble in the lipoidal materials that constitute the major portion of the mycobacterial cell wall, does penetrate these bacteria and is retained. Heating drives carbol fuchsin through the lipoidal wall and into cytoplasm.

Formula in g/L

Basic fuchsine	2,5	Phenol	47,5
Isopropanol	100	Water	850

Instructions for use

1. Place slides on a staining rack and place a piece of filter paper, larger than the size of the smear, on each slide.

2. Flood with carbol fuchsin. Heat gently to steaming and allow to steam for 5 min. Do not overheat.

3. Remove the filter paper.

4. Wash gently in running water.

5. Decolorize with a decolorizer with two changes of reagent for 1-2 min until no more red color appears in washing.

6. Wash slides gently in running water.

7. Counterstain with methylene blue for 30 s.

8. Wash gently in running water.

9. Dry over gentle heat.

10. Examine under a microscope.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25°C)
w/o rests	Liquid	N/A	N/A	N/A

Microbiological test

Note: Any interference is not known. Acid, basic or high levels of Chloride or salts in wash water could alter the results.

Microrganisms	Characteristic reaction
Acid-fast organisms (AFB)	Orange-red colonies
Non-acid-fast organisms	Blue colonies

Storage

Clorhidric Alcohol

For staining microorganisms by Ziehl-Neelsen acid-fast procedure.For "in vitro" diagnostic.

Practical information

Aplications Differentiation Categories Acid-fast organisms (AFB)

Industry: Dyes and stains

Principles and uses

The acid-fast stain is a differential stain.

Bacteria are classified as acid-fast if they retain the primary stain (carbol fuchsin) after washing with strong acid and appear red, or as non-acid-fast if they lose their colour on washing with acid and counter stained by the methylene blue. Acid-fast property is due to the presence of high contents of a lipid called mycolic acid in the cell wall, that makes penetration by stains extremely difficult. Once the stain has penetrated it cannot be readily removed.

Formula in g/L

Ethanol

950 HCI

50

Instructions for use

1. Place slides on a staining rack and place a piece of filter paper, larger than the size of the smear, on each slide.

2. Flood with carbol fuchsin. Heat gently to steaming and allow to steam for 5 min. Do not overheat.

3. Remove the filter paper.

4. Wash gently in running water.

5. Decolorize with a decolorizer with two changes of reagent for 1-2 min until no more red color appears in washing.

6. Wash slides gently in running water.

7. Counterstain with methylene blue for 30 s.

8. Wash gently in running water.

9. Dry over gentle heat.

10. Examine under a microscope.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25°C)
w/o rests	Liquid	N/A	N/A	0,5 - 2

Microbiological test

Any interference is not known. Acid, basic or high levels of Chloride or salts in wash water could alter the results.

Microrganisms	Characteristic reaction
Acid-fast organisms (AFB)	Orange-red colonies
Non-acid-fast organisms	Blue colonies

Storage

Clorhidric Alcohol

For staining microorganisms by Ziehl-Neelsen acid-fast procedure.For "in vitro" diagnostic.

Practical information

Aplications Differentiation Categories Acid-fast organisms (AFB)

Industry: Dyes and stains

Principles and uses

The acid-fast stain is a differential stain.

Bacteria are classified as acid-fast if they retain the primary stain (carbol fuchsin) after washing with strong acid and appear red, or as non-acid-fast if they lose their colour on washing with acid and counter stained by the methylene blue. Acid-fast property is due to the presence of high contents of a lipid called mycolic acid in the cell wall, that makes penetration by stains extremely difficult. Once the stain has penetrated it cannot be readily removed.

Formula in g/L

Ethanol

950 HCI

50

Instructions for use

1. Place slides on a staining rack and place a piece of filter paper, larger than the size of the smear, on each slide.

2. Flood with carbol fuchsin. Heat gently to steaming and allow to steam for 5 min. Do not overheat.

3. Remove the filter paper.

4. Wash gently in running water.

5. Decolorize with a decolorizer with two changes of reagent for 1-2 min until no more red color appears in washing.

6. Wash slides gently in running water.

7. Counterstain with methylene blue for 30 s.

8. Wash gently in running water.

9. Dry over gentle heat.

10. Examine under a microscope.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25°C)
w/o rests	Liquid	N/A	N/A	0,5 - 2

Microbiological test

Any interference is not known. Acid, basic or high levels of Chloride or salts in wash water could alter the results.

Microrganisms	Characteristic reaction
Acid-fast organisms (AFB)	Orange-red colonies
Non-acid-fast organisms	Blue colonies

Storage

CondaSafe Stain

Used for detecting double-strand DNA and single-stranded RNA.

Practical information

Industry: Molecular biology / Reactivos para tinción

Principles and uses

CondaSafe Stain is a new nucleic acid stain which can be used as a safer alternative to the traditional ethidium bromide for detecting nucleic acids in agarose gels. It is as sensitive as ethidium bromide and can be used exactly in the same way in agarose gel electrophoresis. Conda Safe Nucleic Acid Staining Solution emits green fluorescence when bound to DNA or RNA. It has two secondary fluorescence excitation peaks (~270 nm and ~290 nm) and one strong excitation peak at 490 nm. The fluorescence emission is similar to ethidium bromide when bound to DNA at ~530 nm. Thus Conda Safe Nucleic Acid Staining Solution is compatible with wide variety of gel reading instruments.

Instructions for use

1- Prepare 70-100 ml of an agarose gel solution (concentration from 0.8-3.0%) and heat until the solution is completely clear and no small floating particles are visible.

2- Let the solution cool down and add 2-3 μl of CONDA Safe Nucleic Acid Staining Solution to the agarose gel solution.

3- Mix gently and cast into the tray.

4- When the gel is solid, load the samples and perform electrophoresis.

5- Detect the bands under an UV trans-illuminator.

Note: 1 mL of CONDA Safe Nucleic Acid Staining Solution is sufficient for 17-25 liters of agarose. The thickness of the gel should be <0.5 cm. CONDA Safe Nucleic Acid Staining Solution is non-carcinogenic but may irritate skin and eyes. Please wear gloves while handling.

Post-Staining:

- The post-staining solution may be used 2-3 times. Staining solution to be reused should preferably be stored at room temperature in the dark.

- For <0.5 cm thick agarose gels, 10-15 µl of stain should be used per 100 ml of buffer.
- Optimal staining time (5-60 minutes) and the amount of stain may depend on the thickness of the gel and the percentage of agarose.

Storage

Temp. Min.:4 °C Temp. Max.:25 °C

Gram Stain

Colouring, fixating and decolouring solutions for bacterial classification according to gram stain.

Practical information

AplicationsCategoriesDifferentiationGram-positive bacteriaDifferentiationGram-negative bacteria

Industry: Dyes and stains

Principles and uses

The Gram Stain procedure differentiates microorganisms into two groups, those which retain the primary dye (Gram-positive) and those which lose the primary dye, due to the structure of its cellular wall, and take the colour of the counterstain (Gram-negatives).

The procedure needs four reagents: Primary dye (Crystal Violet Solution), lodine solution (Lugol), Decolorizer (Acetone Ethanol Decolorant) and a counter stain (Safranin Solution).

Formula in g/L

Acetone Ethanol Decolorant			
Ethanol	970	Acetone	30
Lugol			
Water	990	lodine	3,5
Potassium iodide	6,5		
Oxalate Crystal Violet Solution			
Ethanol	200	Water	787
Ammonium oxalate	7,5	Crystal violet	5,5
Safranin Solution			
Safranin	4,5	Water	795,5
Ethanol	200		

Instructions for use

Prepare a smear and heat-fix it by gentle heating in the flame.

1- Cover the smear with Crystal Violet. Let stand for 1 min.

2- Remove excess by rinsing with tap water.

3- Cover with Lugol and allow standing for 1 min.

4- Decant and rinse with tap water.

5- Decolorize with Acetone Ethanol Decolorant until waste decolorizer were colourless.

6- Rinse with tap water.

7- Counter stain with Safranin Solution for 1 min.

8- Rinse with tap water and air dry.

Examine under an oil immersion objective.

The procedure can be modified according to the user's preferences to achieve a weaker or stronger colour intensity, being carried out by changing the times for staining, washing etc.

Old cultures or smears could give atypical results. That is why cultures of 18-24 hours or recent smears are recommended.

It is very important to control the heat-fixation (few seconds), any excess heating could produce erroneous results.

Highly chlorinated tap water could weak the counter staining.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25°C)
w/o rests	Liquid	N/A	N/A	N/A

Microbiological test

Microrganisms	Specification
Gram-positive bacteria	Dark violet colonies
Gram-negative bacteria	Orange-red colonies

Storage

Lugol

Colouring, fixating and decolouring solutions for bacterial classification according to gram stain.

Practical information

AplicationsCategoriesDetectionGram-positive bacteriaDetectionGram-negative bacteria

Industry: Dyes and stains

Principles and uses

The Gram strain procedure differentiates microorganisms into two groups, those which retain the primary dye (Gram-positive) and those which lose the primary dye, due to the structure of cellular wall, and take the colour of the counterstain (Gram-negatives).

The procedure needs four reagents: Primary dye (Oxalate Crystal Violet Solution), Iodine solution (Lugol), Decolorizer (Acetone Ethanol Decolorant) and Counter stain (Safranin Solution).

Formula in g/L

lodine	4 Potassium iodide	7
Water S	9	

Instructions for use

Prepare a smear and heat-fix it by gentle heating in the flame.

1- Cover the smear with Crystal Violet. Let stand for 1 min.

2- Remove excess by rinsing with tap water.

3- Cover with Lugol and allow standing for 1 min.

4- Decant and rinse with tap water.

5- Decolorize with Acetone Ethanol Decolorant until waste decolorizer were colourless.

6- Rinse with tap water.

7- Counter stain with Safranin Solution for 1 min.

8- Rinse with tap water and air dry.

Examine under an oil immersion objective.

The procedure can be modified according to the user's preferences to achieve a weaker or stronger colour intensity, being carried out by changing the times for staining, washing etc.

Old cultures or smears could give atypical results. That is why cultures of 18-24 hours or recent smears are recommended.

It is very important to control the heat-fixation (few seconds), any excess heating could produce erroneous results. Highly chlorinated tap water could weak the counter staining.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25°C)
w/o rests	Liquid	N/A	N/A	N/A

Microbiological test

Note: Any interference is not known. Acid, basic or high levels of Chloride or salts in wash water could alter the results.

MicrorganismsCharacteristic reactionGram-positive bacteriaBlue to purple coloniesGram-negative bacteriaPink to red colonies

Storage

Lugol

Colouring, fixating and decolouring solutions for bacterial classification according to gram stain.

Practical information

 Aplications
 Categories

 Detection
 Gram-positive bacteria

 Detection
 Gram-negative bacteria

Industry: Dyes and stains

Principles and uses

The Gram strain procedure differentiates microorganisms into two groups, those which retain the primary dye (Gram-positive) and those which lose the primary dye, due to the structure of cellular wall, and take the colour of the counterstain (Gram-negatives).

The procedure needs four reagents: Primary dye (Oxalate Crystal Violet Solution), Iodine solution (Lugol), Decolorizer (Acetone Ethanol Decolorant) and Counter stain (Safranin Solution).

Formula in g/L

lodine	4	Potassium iodide	7
Water	989	_	

Instructions for use

Prepare a smear and heat-fix it by gentle heating in the flame.

1- Cover the smear with Crystal Violet. Let stand for 1 min.

2- Remove excess by rinsing with tap water.

3- Cover with Lugol and allow standing for 1 min.

4- Decant and rinse with tap water.

5- Decolorize with Acetone Ethanol Decolorant until waste decolorizer were colourless.

6- Rinse with tap water.

7- Counter stain with Safranin Solution for 1 min.

8- Rinse with tap water and air dry.

Examine under an oil immersion objective.

The procedure can be modified according to the user's preferences to achieve a weaker or stronger colour intensity, being carried out by changing the times for staining, washing etc.

Old cultures or smears could give atypical results. That is why cultures of 18-24 hours or recent smears are recommended.

It is very important to control the heat-fixation (few seconds), any excess heating could produce erroneous results. Highly chlorinated tap water could weak the counter staining.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25°C)
w/o rests	Liquid	N/A	N/A	N/A

Microbiological test

Note: Any interference is not known. Acid, basic or high levels of Chloride or salts in wash water could alter the results.

MicrorganismsCharacteristic reactionGram-positive bacteriaBlue to purple coloniesGram-negative bacteriaPink to red colonies

Storage

Methylene Blue

For staining microorganisms by Ziehl-Neelsen acid-fast procedure.For "in vitro" diagnostic.

Practical information

Aplications Stain reagents Categories Acid-fast organisms (AFB)

Industry: Dyes and stains

Principles and uses

The acid-fast stain is a differential stain.

Bacteria are classified as acid-fast if they retain the primary stain (carbol fuchsin) after washing with strong acid and appear red, or as non-acid-fast if they lose their colour on washing with acid and counter stained by the methylene blue. Acid-fast property is due to the presence of high contents of a lipid called mycolic acid in the cell wall, that makes penetration by stains extremely difficult. Once the stain has penetrated it cannot be readily removed.

Formula in g/L

Ethanol 300	Methylene blue	5
Phenol 10	Water	385

Instructions for use

1. Place slides on a staining rack and place a piece of filter paper, larger than the size of the smear, on each slide.

2. Flood with carbol fuchsin. Heat gently to steaming and allow to steam for 5 min. Do not overheat.

3. Remove the filter paper.

4. Wash gently in running water.

5. Decolorize with a decolorizer with two changes of reagent for 1-2 min until no more red color appears in washing.

6. Wash slides gently in running water.

7. Counterstain with methylene blue for 30 s.

8. Wash gently in running water.

9. Dry over gentle heat.

10. Examine under a microscope.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25°C)
w/o rests	Liquid	N/A	N/A	N/A

Microbiological test

Note: Any interference is not known. Acid, basic or high levels of Chloride or salts in wash water could alter the results.

Microrganisms	Characteristic reaction
Acid-fast organisms (AFB)	Orange-red colonies
Non-acid-fast organisms	Blue colonies

Storage

Temp. Min.:15 °C Temp. Max.:30 °C

Methylene Blue

For staining microorganisms by Ziehl-Neelsen acid-fast procedure.For "in vitro" diagnostic.

Practical information

Aplications Stain reagents Categories Acid-fast organisms (AFB)

Industry: Dyes and stains

Principles and uses

The acid-fast stain is a differential stain.

Bacteria are classified as acid-fast if they retain the primary stain (carbol fuchsin) after washing with strong acid and appear red, or as non-acid-fast if they lose their colour on washing with acid and counter stained by the methylene blue. Acid-fast property is due to the presence of high contents of a lipid called mycolic acid in the cell wall, that makes penetration by stains extremely difficult. Once the stain has penetrated it cannot be readily removed.

Formula in g/L

Ethanol 300	Methylene blue	5
Phenol 10	Water 68	5

Instructions for use

1. Place slides on a staining rack and place a piece of filter paper, larger than the size of the smear, on each slide.

2. Flood with carbol fuchsin. Heat gently to steaming and allow to steam for 5 min. Do not overheat.

3. Remove the filter paper.

4. Wash gently in running water.

5. Decolorize with a decolorizer with two changes of reagent for 1-2 min until no more red color appears in washing.

6. Wash slides gently in running water.

7. Counterstain with methylene blue for 30 s.

8. Wash gently in running water.

9. Dry over gentle heat.

10. Examine under a microscope.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25°C)
w/o rests	Liquid	N/A	N/A	N/A

Microbiological test

Note: Any interference is not known. Acid, basic or high levels of Chloride or salts in wash water could alter the results.

Microrganisms	Characteristic reaction
Acid-fast organisms (AFB)	Orange-red colonies
Non-acid-fast organisms	Blue colonies

Storage

Temp. Min.:15 °C Temp. Max.:30 °C

Oxalate Crystal Violet

For use in the Gram's Staining method for micro organisms.For "in vitro" diagnostic

Practical information

AplicationsCategoriesDetectionGram-positive bacteriaDetectionGram-negative bacteria

Industry: Dyes and stains

Principles and uses

The Gram strain procedure differentiates microorganisms into two groups, those which retain the primary dye (Gram-positive) and those which lose the primary dye, due to the structure of cellular wall, and take the colour of the counterstain (Gram-negatives).

The procedure needs four reagents: Primary dye (Oxalate Crystal Violet Solution), Iodine solution (Lugol), Decolorizer (Acetone Ethanol Decolorant) and Counter stain (Safranin Solution).

Formula in g/L

Ammonium oxalate 7	7,5	Ethanol	200
Water 7	787	Crystal Violet, Cl nº 42 555	5,5

Instructions for use

Prepare a smear and heat-fix it by gentle heating in the flame.

1- Cover the smear with Crystal Violet. Let stand for 1 min.

2- Remove excess by rinsing with tap water.

3- Cover with Lugol and allow standing for 1 min.

4- Decant and rinse with tap water.

5- Decolorize with Acetone Ethanol Decolorant until waste decolorizer were colourless.

6- Rinse with tap water.

7- Counter stain with Safranin Solution for 1 min.

8- Rinse with tap water and air dry.

Examine under an oil immersion objective.

The procedure can be modified according to the user's preferences to achieve a weaker or stronger colour intensity, being carried out by changing the times for staining, washing etc.

Old cultures or smears could give atypical results. That is why cultures of 18-24 hours or recent smears are recommended.

It is very important to control the heat-fixation (few seconds), any excess heating could produce erroneous results. Highly chlorinated tap water could weak the counter staining.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25°C)
w/o rests	Liquid	N/A	N/A	N/A

Microbiological test

Note: Any interference is not known. Acid, basic or high levels of Chloride or salts in wash water could alter the results.

Microrganisms Gram-positive bacteria Gram-negative bacteria

Storage

Temp. Min.:15 °C Temp. Max.:25 °C Characteristic reaction

Blue-purple colonies Pink-red colonies

Oxalate Crystal Violet Solution

Colouring, fixating and decolouring solutions for bacterial classification according to gram stain.

Practical information

AplicationsCategoriesDifferentiationGram-positive bacteriaDifferentiationGram-negative bacteria

Principles and uses

The Gram strain procedure differentiates microorganisms into two groups, those which retain the primary dye (Gram-positive) and those which lose the primary dye, due to the structure of cellular wall, and take the colour of the counterstain (Gram-negatives).

The procedure needs four reagents: Primary dye (Oxalate Crystal Violet Solution), Iodine solution (Lugol), Decolorizer (Acetone Ethanol Decolorant) and Counter stain (Safranin Solution).

Formula in g/LAmmonium oxalate7,5Crystal violet5,5Ethanol200Water787

Instructions for use

Prepare a smear and heat-fix it by gentle heating in the flame.

1- Cover the smear with Crystal Violet. Let stand for 1 min.

2- Remove excess by rinsing with tap water.

3- Cover with Lugol and allow standing for 1 min.

4- Decant and rinse with tap water.

5- Decolorize with Acetone Ethanol Decolorant until waste decolorizer were colourless.

6- Rinse with tap water.

7- Counter stain with Safranin Solution for 1 min.

8- Rinse with tap water and air dry.

Examine under an oil immersion objective.

The procedure can be modified according to the user's preferences to achieve a weaker or stronger colour intensity, being carried out by changing the times for staining, washing etc.

Old cultures or smears could give atypical results. That is why cultures of 18-24 hours or recent smears are recommended.

It is very important to control the heat-fixation (few seconds), any excess heating could produce erroneous results. Highly chlorinated tap water could weak the counter staining.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25⁰C)
w/o rests	Liquid	N/A	N/A	N/A

Microbiological test

Microrganisms	Specification
Gram-positive bacteria	Dark violet colonies

Gram-negative bacteria

Storage

Potassium permanganate

Practical information

Aplications

For use in Morse's fluorescence method for acid-alcohol resistant microorganisms staining. For "in vitro" diagnostic.

Categories

Differentiation Acid-fast organisms (AFB) Industry: Dyes and stains Principles and uses The technique for the detection of acid-alcohol resistant microorganisms by fluorescence is similar to the classic Ziehl staining, but in this case carbol fucshin is replaced with a fluorescent dye with added phenol. Fluorescence coloring presents the advantage of greater visibility of a fluorescent microorganism against a dark background. This allows use of lower-magnification lens, which increase the field of view and decrease the time needed to evaluate the preparation. Formula in g/L 955 Potassium permanganate Water 5 Instructions for use 1- Place slides on a staining rack and flood with Auramine for 15 min.

2-Wash gently in running water. 3-Decolorize with a decolorizer for 30 - 60 s.

4-Wash slides gently in running water.

5-Counterstain for 2 min (Potassium permanganate or Thiazine red).

6-Wash gently in running water.

7-Air dry.

8-Examine under a microscope fitted with filter sets.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25°C)
w/o rests	Liquid	N/A	N/A	N/A

Microbiological test

Any interference is not known. Acid, basic or high levels of Chloride or salts in wash water could alter the results.

Microrganisms	Specification
Background with permanganate	Black
Background with thiazine red	Dark red
Acid-fast organisms (AFB)	Bright greenish-yellow fluorescing
Non-acid-fast organisms	Non-fluorescent or slightly fluorescent

Storage

Temp. Min.:15 °C Temp. Max.:30 °C

Potassium permanganate

Practical information

Aplications

For use in Morse's fluorescence method for acid-alcohol resistant microorganisms staining. For "in vitro" diagnostic.

Categories

Differentiation Acid-fast organisms (AFB) Industry: Dyes and stains Principles and uses The technique for the detection of acid-alcohol resistant microorganisms by fluorescence is similar to the classic Ziehl staining, but in this case carbol fucshin is replaced with a fluorescent dye with added phenol. Fluorescence coloring presents the advantage of greater visibility of a fluorescent microorganism against a dark background. This allows use of lower-magnification lens, which increase the field of view and decrease the time needed to evaluate the preparation. Formula in g/L 955 Potassium permanganate Water 5 Instructions for use

1- Place slides on a staining rack and flood with Auramine for 15 min.

2-Wash gently in running water.

3-Decolorize with a decolorizer for 30 - 60 s.

4-Wash slides gently in running water.

5-Counterstain for 2 min (Potassium permanganate or Thiazine red).

6-Wash gently in running water. 7-Air dry.

8-Examine under a microscope fitted with filter sets.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25°C)
w/o rests	Liquid	N/A	N/A	N/A

Microbiological test

Any interference is not known. Acid, basic or high levels of Chloride or salts in wash water could alter the results.

Microrganisms	Specification
Background with permanganate	Black
Background with thiazine red	Dark red
Acid-fast organisms (AFB)	Bright greenish-yellow fluorescing
Non-acid-fast organisms	Non-fluorescent or slightly fluorescent

Storage

Temp. Min.:15 °C Temp. Max.:30 °C

Safranin Solution

Colouring, fixating and decolouring solutions for bacterial classification according to gram stain.

Practical information

AplicationsCategoriesDifferentiationGram-positive bacteriaDifferentiationGram-negative bacteria

Industry: Dyes and stains

Principles and uses

The Gram strain procedure differentiates microorganisms into two groups, those which retain the primary dye (Gram-positive) and those which lose the primary dye, due to the structure of cellular wall, and take the colour of the counterstain (Gram-negatives).

The procedure needs four reagents: Primary dye (Oxalate Crystal Violet Solution), Iodine solution (Lugol), Decolorizer (Acetone Ethanol Decolorant) and Counter stain (Safranin Solution).

Formula in g/L

Ethanol	200	Safranin	4,5
Water	795,5	_	

Instructions for use

Prepare a smear and heat-fix it by gentle heating in the flame.

1- Cover the smear with Crystal Violet. Let stand for 1 min.

2- Remove excess by rinsing with tap water.

3- Cover with Lugol and allow standing for 1 min.

4- Decant and rinse with tap water.

5- Decolorize with Acetone Ethanol Decolorant until waste decolorizer were colourless.

6- Rinse with tap water.

7- Counter stain with Safranin Solution for 1 min.

8- Rinse with tap water and air dry.

Examine under an oil immersion objective.

The procedure can be modified according to the user's preferences to achieve a weaker or stronger colour intensity, being carried out by changing the times for staining, washing etc.

Old cultures or smears could give atypical results. That is why cultures of 18-24 hours or recent smears are recommended.

It is very important to control the heat-fixation (few seconds), any excess heating could produce erroneous results. Highly chlorinated tap water could weak the counter staining.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25ºC)
w/o rests	Liquid	N/A	N/A	N/A

Microbiological test

Microrganisms

Specification

Gram-positive bacteria Gram-negative bacteria

Storage

Temp. Min.:15 °C Temp. Max.:30 °C Blue-purple colonies Pink-red colonies

Safranin Solution

Colouring, fixating and decolouring solutions for bacterial classification according to gram stain.

Practical information

AplicationsCategoriesDifferentiationGram-positive bacteriaDifferentiationGram-negative bacteria

Industry: Dyes and stains

Principles and uses

The Gram strain procedure differentiates microorganisms into two groups, those which retain the primary dye (Gram-positive) and those which lose the primary dye, due to the structure of cellular wall, and take the colour of the counterstain (Gram-negatives).

The procedure needs four reagents: Primary dye (Oxalate Crystal Violet Solution), Iodine solution (Lugol), Decolorizer (Acetone Ethanol Decolorant) and Counter stain (Safranin Solution).

Formula in g/L

Ethanol 20	D Safranin 4,5
Water 795	5

Instructions for use

Prepare a smear and heat-fix it by gentle heating in the flame.

1- Cover the smear with Crystal Violet. Let stand for 1 min.

2- Remove excess by rinsing with tap water.

3- Cover with Lugol and allow standing for 1 min.

4- Decant and rinse with tap water.

5- Decolorize with Acetone Ethanol Decolorant until waste decolorizer were colourless.

6- Rinse with tap water.

7- Counter stain with Safranin Solution for 1 min.

8- Rinse with tap water and air dry.

Examine under an oil immersion objective.

The procedure can be modified according to the user's preferences to achieve a weaker or stronger colour intensity, being carried out by changing the times for staining, washing etc.

Old cultures or smears could give atypical results. That is why cultures of 18-24 hours or recent smears are recommended.

It is very important to control the heat-fixation (few seconds), any excess heating could produce erroneous results. Highly chlorinated tap water could weak the counter staining.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25°C)
w/o rests	Liquid	N/A	N/A	N/A

Microbiological test

Microrganisms

Specification

Gram-positive bacteria Gram-negative bacteria

Storage

Temp. Min.:15 °C Temp. Max.:30 °C Blue-purple colonies Pink-red colonies

Thiazine Red

For use in Morse's fluorescence method for acid-alcohol resistant microorganisms staining. For "in vitro" diagnostic.

Practical information

Aplications Differentiation Categories Acid-fast organisms (AFB)

Industry: Dyes and stains

Principles and uses

The technique for the detection of acid-alcohol resistant microorganisms by fluorescence is similar to the classic Ziehl staining, but in this case carbol fucshin is replaced with a fluorescent dye with added phenol. Fluorescence coloring presents the advantage of greater visibility of a fluorescent microorganism against a dark background. This allows use of lower-magnification lens, which increase the field of view and decrease the time needed to evaluate the preparation.

Formula in all Р 9 T٢

Instructions for use

1- Place slides on a staining rack and flood with Auramine for 15 min.

2-Wash gently in running water.

3-Decolorize with a decolorizer for 30 - 60 s.

4-Wash slides gently in running water.

5-Counterstain for 2 min (Potassium permanganate or Thiazine red).

6-Wash gently in running water.

7-Air dry.

8-Examine under a microscope fitted with filter sets.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25°C)
w/o rests	Liquid	N/A	N/A	N/A

Microbiological test

Any interference is not known. Acid, basic or high levels of Chloride or salts in wash water could alter the results.

Microrganisms	Specification
Background with permanganate	Black
Background with thiazine red	Dark red
Acid-fast organisms (AFB)	Bright greenish-yellow fluorescing
Non-acid-fast organisms	Non-fluorescent or slightly fluorescent

Storage

Temp. Min.:15 °C Temp. Max.:30 °C

ormula in y/L			
henol	1	Water	94
niazine red	50		

Thiazine Red

For use in Morse's fluorescence method for acid-alcohol resistant microorganisms staining. For "in vitro" diagnostic.

Practical information

Aplications Differentiation Categories Acid-fast organisms (AFB)

Industry: Dyes and stains

Principles and uses

The technique for the detection of acid-alcohol resistant microorganisms by fluorescence is similar to the classic Ziehl staining, but in this case carbol fucshin is replaced with a fluorescent dye with added phenol. Fluorescence coloring presents the advantage of greater visibility of a fluorescent microorganism against a dark background. This allows use of lower-magnification lens, which increase the field of view and decrease the time needed to evaluate the preparation.

Formula in g/L Phenol 1 Water 949 Thiazine red 50 949

Instructions for use

1- Place slides on a staining rack and flood with Auramine for 15 min.

2-Wash gently in running water.

3-Decolorize with a decolorizer for 30 - 60 s.

4-Wash slides gently in running water.

5-Counterstain for 2 min (Potassium permanganate or Thiazine red).

6-Wash gently in running water.

7-Air dry.

8-Examine under a microscope fitted with filter sets.

Quality control

Solubility	Appareance	Color of the dehydrated medium	Color of the prepared medium	Final pH (25⁰C)
w/o rests	Liquid	N/A	N/A	N/A

Microbiological test

Any interference is not known. Acid, basic or high levels of Chloride or salts in wash water could alter the results.

Microrganisms	Specification	
Background with permanganate	Black	
Background with thiazine red	Dark red	
Acid-fast organisms (AFB)	Bright greenish-yellow fluorescing	
Non-acid-fast organisms	Non-fluorescent or slightly fluorescent	

Storage

Temp. Min.:15 °C Temp. Max.:30 °C

По вопросам продаж и поддержки обращайтесь:

Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовешенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48

Россия +7(495)268-04-70

Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73

Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Саранск (8342)22-96-24 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35

Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35 Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Киргизия +996(312)-96-26-47

Казахстан +7(7172)727-132

cbc@nt-rt.ru || https://condalab.nt-rt.ru/